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Introduction

M.I. Freldlin ((9], [10]) has recently introduced probabilistic

techniques into the study "wavefront propagation" for systems of reaction-

diffusion PDE. The motivating idea is that should a reaction-diffusion system

possess only a single unstable and a single stable equilibrium, then the

solution u of the system will presumably tend to "switch" for large times

from near the former to near the latter state. A mathematical problem Is then

to describe this transition, ideally in terms of simpler quantities than those

governing the full, detailed behavior of the entire system of PDE. More

precisely, to study the reaction-diffusion problem for large times of order

-1 -1
c , Freidlin suggests a c rescaling in the space and time variables; so

that our attention turns to the solutions u of certain c-dependent systems

of PDE. We then hope to show that as c -- 0, the functions u converge In

some region G c Rn x (0,w) to the stable point, and in the opposite region

[Rn x [O,w)]\G to the unstable point. We simultaneously hope to describe

geometrically or analytically this set G, whose boundary we envision as a

spreading wavefront separating regions with quite different limiting behavior.

This paper, which is an extension to systems of earlier work [6] on

single equations, brings to bear purely PDE techniques to this problem,

especially the theory of viscosity solutions on Hamilton-Jacobi equations,

due to Crandall-Lions [3]. The connection with the foregoing discussion is

that, the region G alluded to above Is the set where the solution J of a

certain Hamilton-Jacobi equation Is negative. Our procedure for understanding

the limiting behavior of the solution of the reaction-diffusion system of PDE

is thus first of all to build an appropriate Hamiltonian H out of the data

given in the problem, second to solve the resulting Hamilton-Jacobi equation

for J, and last to demonstrate the different limiting behavior of the

solutions u of the scaled system on the sets J<O) and QJ>O}. We
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Informally regard the Hamiltonian as controlling somehow the rate of Instabi-

lity of the unstable point. We are thus able to characterize the asymptotic

behavior of the "complicated" reaction-diffusion system in terms of the

"simple" Hamilton-Jacobi equation. This possibility, first identified by

Freldlin [9] in rather different terms, is attractive, but of course requires

for this implementation many structural assumptions on the nonlinearities,

which we list below. It would of course be quite interesting to extend our

results, or at least the point of view espoused above, to systems with more

general nonlinearnties.

More precisely now, we intend to investigate the scaled reaction-

diffusion system:

C C 1 (u)in R n X (O,cc)uk = cdkAu + - fn u

= gk on Rn x 40k

Here the constants dk (15kSm), and the functions

n m m mg: R ---Rm and f: R --.Rm ,

are given, where we write g = (g1,...,gm), f = (fl,'..,fm). The unknown is

U (u *'..,uC). We will assume that
1, m

dk > 0

and that the functions g, f are smooth, bounded and Lipschitz.

In addition we suppose that

(1.2) gk a 0 (k=l, ... ,m)

and

(1.3) GO 0 {gk > 0) (k=l,-..,m)
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is a bounded, smooth subset of R n . Under these assumptions there exists a

unique smooth solution u€  of the PDE (1.1) , with

C u > 0 in Rn x (0,0) (k=l,.--,m).

Our essential assumptions all concern the reaction term f. First of

all we suppose

(FI) f(O) = 0

and also
) k (u 1'**"Uk-',O'Uk+l'...'Um) > 0 if

(F2) {
u 1 , . . - , u k _ 1 , u k + 1, .*- , u m  0 and u > 0 for some index l*k.

Consequently the vector vield f points strictly inward along the boundary

of the positivity set

11 E {u G Rm Ul>O,...,um>O},

except at the point 0, which is an equilibrium point for the system (1.1) £

To ensure that our solutions uC do not become unbounded as c -4 0, we

further hypothesize that

there exists a constant A such that

(F3) j fk(u) S 0 (k=l, ..,m).

if u e IT and Uk a A.
Ao-ession For

T IS GRA&I
DTIC TA![
U.. d [
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U2

0 " { [ U1

Figure 1

Next we set forth additional hypotheses which Imply that the rest point

0 is unstable. Let us define the m x m matrix

C a Df(0),

Df denoting the gradient of f. Thus

Ckl = fk, u1(0) (1<k,ISm).

We assume

(F4) Ckl > 0 (l~k,lsm),

and

(FS) f k(u) S c klUl1 (ueIT, k-l,...,m),

where we employ the standard summation convention.
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for systems of the Kolmogorov-Petrovskii-Piskunov nonlinearity, discussed in

(6].

Our main result, Theorem 1, asserts that under hypotheses (FI) - (F5)

uC (x,t) converges as c -- 0 to zero or not depending on whether J(x,t) > 0

or J(x,t) < 0, the function J satisfying a Hamilton-Jacobi PDE whose

structure we now describe. Given p E Rn, define the m x m matrix

B(p) a diag(..., dk~p 2 ,

and then set

(1.4) A(p) a B(p) + C.

Now the matrix A(p) has positive entries, and so Perron-Frobenius theory

asserts that A(p) possesses a simple, real eigenvalue A0 = A (A(p))

satisfying

Re A < A0

for all other elgenvalues A of A(p). Let us define then the Hamiltonian

(1.5) H(p) a A (A(p)) (p E Rn).

See, for instance, [7] for a review of the various properties of H, and in

particular a proof that H is convex. We additionally set

(1.6) L(q) a sup (p.q-H(p));
perm

L is the Laga-n~gan associated with H. Finally we define for each point

(x,t) . Rn x (O,m) the action function

(1.7) J(x,t) a inf { f L(i(s))dsjz(O) e Goz(t)= x1,

the Infimum taken over all absolutely continuous functions

z: [O,t] Rn

6



satisfying the stated initial and terminal conditions. As we will see, J

turns out to be the (unique) solution of the Hamilton-Jacobi equation

[t + H(DJ) = 0 in Rn x (0,O)

(1.8) J = 0 on C0 x io}

J = + on Int(Rn-G0 ) x {O}

in the viscosity sense (cf. Crandall-Lions (3], Crandall-Evans-Lions (21,

etc.).

Theorem 1. Under hypotheses (FI)-(FS) we have

(1.9) lim u = 0 uniformly on compact subset of {J>O}
£4O

and

(1.10) lrm Inf uk > 0 (k=1,..,m) uniformly on compact subset of {J<O}.

We loosely interpret this theorem as describing how the Hamiltonian H,

which depends upon both C = Df(O) and the diffusion constants dI,...,dm

controls the instability of the equilibrium point u = 0.

Remark We should note also that it is possible to refine conclusion (1.10)

by making further assumptions on the behavior of the vector field f in IT.

As in Freldlin [91, we may for instance &ssume that there exists a unique

equilibrium point a * U which is asymptotically stable for the flow

generated by the vector field f, as In the following illustration.
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Figure 2

Under various fairly stringent technical assumptions, it is then possible to

show that

C(1.11) lim u = a uniformly on compact subsets of {J<0).
C-)O

We may consequently think of the boundary of the set G a {J<O} as a

"propagating wavefront" in the sense explained above.

Assertions (1.9), (1.11) are attractive, but the sufficient conditions

we know to improve (1.10) to (1.11) are rather unsatisfactory technically.

(For instance, we could assume that the diffusions constants are all equal and

that f has a convex Lyapunov function associated with the stable point a,

etc.). For this reason, we will not here formulate any precise assertions

leading to (1.11), but instead refer the reader to FreidlIn [9], [10] for

more information on this point. )

Our paper is organized so that the proof of Theorem I appears in f3, f2

being devoted to some preliminary estimates. The main idea, following [8],

8



is to perform " change of variables, after which we send c -0 0. This approach

is greatly complicated for the present case of systems, since we lose the

maximum principid and consequently many of the estimates available in [6] for

the scalar case. We depend instead upon some recent techniques introduced by

Ishii [11] and Barles-Perthame (1] in Hamilton-Jacobi theory, which allow us

to proceed with only supremum-norm bounds. This is a great advantage since

better estimates seem to be unobtainable, but the price is a far greater

intricacy in some of the convergence proofs. We will encounter for instance

troubles in interpreting in Just what sense certain solutions take on their

initial values. An appendix (14) develops some useful theory on such

questions, which we will need in f3.

Finally we let us note that although Freldlin's work has greatly inspired

us, we believe that the PDE techniques develped here (and in [6]) provide

information which is not at all clear from the probabilistic viewpoint. We

for instance do not require the fairly specific structural assumptions on the

nonlinearity f utilized in (9, p.467].

9



2. Preliminary estimates

Henceforth we always suppose hypotheses (F1)-(F5) to be in effect.

Lemma 2. 1 There exists a constant C such that

(2.1) 0 < u C1  -in Rn x(O,0)

for k=1,---,m and each c > Y.

Proof. Choose a smooth, bounded, Lipschitz vector field

: Rm .m, Rm

such that

r C(u) = f(u) (u GT)
(2.2) and

(k(u) a 0 If uk < 0, k=l,.-*,m;

this is possible in light of (F2). Now let uC be the unique, smooth

solution of the system

U,C t = cd kAuk + C k (u ) In Rnx (0,.)

(2.3)

AC 
Rn Xuk = gkon x0.

Choose

71: R -- R

to be smooth and convex, with

(2.4)0 on
(> 0 

on (-o.0)

Then for each k-l,,- a,

10
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dIf 71]dt = c fiyuR]I DuI 2 dx

= I [ ,uk]fk(UC )dx

< 0, by (F3).

Since

)t~kdx =0,!-n

we discover

k  e in x [O,w).

3. Observe now that hypotheses (FI), (F2) and (F4) imply fk (u) 0 if
Ck

uk > 0 Is small enough (k=l, ..*,m). Thus the strong maximum principle for

parabolic equations implies

C > 0 in Rn x [O,W), (k=1,...,m)

We next introduce, following (5], [6], (71, (8], etc. the new functions

C C nx 00
(2.5) vk E- clog uk in n x (O,) (k=l,..,m).

/

AC clutosoC c v j = VC 2 .. nvk) s )tinvk ,t dkvk+ d ki Dj C In Rnx(o,M)

(2.6) C v k -c log gk on Go x {0}

vk = + m on int(R -)x {0}.

Note also that in view of Lemma 2.1 we have

(2.7) - log C1  in Rn X[0,)
k  I

12



for k=l,...,m and each c > 0.

Lemma 2.2 For each compact subset Q c c (Rnx(O,w)) u (GO x [O,w)) there

exists a constant C2 (Q) such that

IvI 1 C2(Q) in Q

for k = 1,...,m and each c > 0.

Proof 1. Let 0 denote any open subset of Rn x (O,w). Suppose that # is

a smooth function satisfying

(2.8) Ot - cdkAO + dk IDOI2 2 A in 0,

where A > 0 is a positive constant to be selected later. Assume now that

Vk-0 has a maximum at some point (XO tO ) e 0. Then at the point (XOtO) we

have

0 : -] - cdkA kJ

f k(u')

:5 - - A by (2.6) and (2.8).

But

- fk(u = - f (.0., _Ito,

+ .,UItlo, Ul,") - (j • •. ",Ukl U, Uk1l • •)

S C uk , according to Lemma 2.1 and (F2).

Substituting above we discover

O S C -A,

13 p



a contradiction for A large enough.

2. We may assume that for some r > 0 the ball B(O,r) lies in G 0  Set

the r2  _ 12  + g+ 7 (lxl<r, t ZO)

g and z picked as indicated below (cf. [5], (7]). We compute

1 c '01 + d 1lD'2

df~n + 2 23 + d 24

£k J2 (r 2_1I2) ] (r4 2_ X

kA in B(O,r) x (0,co) (~,-,

provided 9 > 0 Is large enough. If we then adjust z' to be so large that

1 C o (~)x()k nB0r)z{}

we deduce from Step 1 that

v 15I (~)x(~)
Vk inB0) (,)

Consequently

(2.9) vk C C In B(0,r/2) x (0,T).

for k=i,'*.,m and each c > 0, T > 0.

3. Now write

*2 ax +g + 7 (IXI>E,t>o).
t 2

We calculate

14



A in (R n_.B(Or/2)) x (0,.),

provided a, 0 > 0 and large enough. We now pick v large enough to ensure

2 2: v C on OR(O,z-/2) x(0,T).

This is possible owing to estimate (2.9). Consequently Step 1 implies

V C S 02 in (R n_.B(Or/2))x(OT)
Vk

for k=l,*'.,m and each c > 0, T > 0.

This bound and (2.9) lead at once to the estimate stated In the

Lemma. 0



3. Proof of Theorem 1.

For each (x,t) eRn x (0,.) we set

(3.1) vkxt li urn m v C(y's) (k=l, ...,m)
kl~x't) C-)O k

(y, s)4(x, t)

and

(3.2) v (x,t) 11Mr sup V(' (k-l,*'*,m).

(y,s)4(x, t)

We additionally write

(3.3) v* M min k. v * max v k
1~sk:m 15k:Sm

We Intend to show that v. is a lower semicontinuous Epesolution, and v

is a upper semicontinuous subsolution, of an appropriate variational

inequality Involving the Hamiltonian H defined In fl.

Proposit ion 3. 1. We have

(I)

(3.4) min(v~t + H(Dv,),v,) 2: 0 in Rnx (0,w)

in the viscosity sense, and

0 on G 0x {0}

(3.5) v* 4{+00 on (Rna0)x (0).

Proof 1. Because of (2.7) It is clear that

vo 0.

To demonstrate that

vet + H(Dv,) k 0 In R n x (0,M)

16



in the viscosity sense, we fix a smooth test function *and assume

{v.-O has a strict local minimum at some point
(3.6)

No t 0) e R n x (0,w~).

We must prove

(3.7 Ot+ H(DO) 2: 0 at NJ0 t0)

2. Let (0 1 .***lk ) be a positive eigenvector of the matrix A(DO(x09tt0)

corresponding to the principal eigenvalue A 0(A(DNx t 0) H(D(x0,t 0)

Note then

(3.8) v,(x,t) = lim inf min rv(ys) + C log
C-)O i5 1 m (V

(Y, s)-4(x, t)

Combining (3.6) and (3.8), we deduce that there exists an Index k e {,*,}

a sequence c r -4 0, and points (x'cr,ter) such that

(3. ) vr C, tC' +C lg 4 = i vr r'xcr tcrl + C log 0 1 - . N )
(39 v(rXcrt + r log V lkmm , 1 ' r 1) 0

(3.10) Ck + V log OkJ - has a local minimum at (Xcr,tcr),

and

(3.11) (X er,tcr] --+N 0 t 0 ) as r --+ cc.

17



Applying then the maximum principle, we obtain from (2.6) Cthe estimate

0 5 - c dA d I02+ kuc.
t r k ~kI Cr

uk
(3. 12)

S* 0 -c rd k AO+d kID0II + Ckl exp Iji]..
r

at the point [x Ccr )~r. the second inequality being a consequence of

hypothesis WF5). Using (3.9) and (3.11), we simplify (3.12) to read

0 1 t+ dIDo 2 + ck 1 + o(l) as e r --

at (xot 0. Since

d kIDO 12 k + ckl O'l (AD(xopt ))0e)k = H(DO(xot ))0 ko

we deduce (3.7) upon letting c r-* 0.

3. We next verify assertion (it). To do so, we fix p~ > 0 and select

Se CW (Rn) satisfying

=0 on do, C> 0 on n P d

0 1.

We now claim that

(3.13) ma~~+(v),,p)2 on R n X{40)

in the viscosity sense, which means that If *Is a smooth test function and

rV,-# has a strict local minimum

(314 at some point (x0 0) e R n X 401,

then either

18



(3.15) v (xoO) 2: A (xO )

or else

(3.16) ot + H(D) 2 0 at (xO0).

Now if x0 e 60, then (3.15) is clearly true. Otherwise suppose

X R' - G0 andox0

v*(xoO) < AC(xO0 ) < W.

We repeat now the argument from Steps 1-2, noting in particular that since

vcr(x,O) = + c for all x near
k

the points IxCrtCr] above lie in Rn x (0,o=). As such the maximum principle

argument leading to inequality (3.12) is valid, and the rest of the proof

proceeds as before, yielding at last the inequality (3.16).

4. Since

v (x,0) -- 0 as c --4 0 (k=l,...,m)

if X0 e Go t we have

v* = 0 on GO x {0}.

To see that

(3.22) v* = + w on (R -GO) x {0},

choose any point x0 e Rn _ do and suppose instead

(3.17) v*(x,O) < a*

Fix 6 > 0 and then define

a (x,t) * - 2 At,

for A = A(M) to be selected below. Since v. is lower semicontinuous,

19



(3.18) v- has a minimum at a point (x, ta) e Rnx[o, ). 

Then
Ix -o 2 Ix45-xol 2

(3.19) 0 : v*(xt 4) + + At6 a v,(xoO) < 0.
51

Now if ta > 0,

a + H(Da ) k 0 at (xt 5);

whence

(3.20) -A + H 2 0,

a contraction for A = A(S) sufficiently large. Thus t = 0. If

v*(xoO) < A(Xo0

then (3.19) implies

v*(xa,0) < I (x a

for small enough a, and so according to (3.13) we once more would obtain

(3.20). Thus

v,(xoO) k A(Xo)

But since (x0 ) > 0 and p > 0 is arbitrary, (3.17) cannot be true. o

Following next is the analogue of Proposition 3.1, with v in place of

V..

Proosition 3.2. We have

(3.21) min (vt + H(Dv ),v ) S 0 in R x (0,M)

in the viscosity sense, and

20



(11)

o on Go X O0

(3.22) v

+O on (Rn-G ) x O}.

0

Proof 1. Since v a 0, to establish (3.21) we must show

v; + H(Dv ) 5 0 on the set {v > 0),

in the viscosity sense. So select any smooth test function * and suppose

-v has a strict local maximum at some point

(3.23)

(Xo, t0 ) e Rn x (0,),

with

(3.24) v (xot O ) > 0.

We need to show

(3.25) Ot + H(DO) : 0 at (xo, to)

Let (@1, ,@ik) be a positive elgenvector of A(D(xot o)), correspond-

Ing to the principal elgenvalue A (A(DO(xo,to)) = H(DO(xo,to)). Then

(3.26) v (x,t)= lim sup max Cv(Y's) + c log
C-O 1515m

(y,s)4(x,t)

Combining (3.23) and (3.26), we deduce that there exists an index

k E {1,...,m}, a sequence cr --4 0, and points (xCr,tCr) such that

(3 . 2 7 )~ r  Cr,tr + C log max Icr xcrtcr + log 01 -- v (xo,t O )k ( j r 1k 1 m1  J ( 1  0r0

(3.28) vr' cr,tCr + C log k has a local maximum at (c,

21



and

(3.29) IxCr, ter (Xo, to0) as r co=.

Utilizing the maximum principle, we deduce from (2.6) the InequalityC

(3.30) tCrdkA + dkI c f kf c

t r OD~c 5Cr
Uk

at the point Ix Cr'ttr I We must now study the limiting behavior of the term

on the right hand side as r -4 w.

2. We assert

(3.31) ur (Cr,ttr) -0 (1 = 1,,

as r -4 a. To see this, note that

Uk x tXCrtr exp kCr r t -r _ 0,

owing to (3.24) and (3.27). This establishes (3.31) for 1 = k. Now suppose

additionally that for some index 1 * k,

lir sup uCr f Cr tcr a > 0.

Then passing if necessary through an appropriate subsequence

.s. .=, 
C 

.r 
we find

a > 0 occupying the 1t h argument and 0 occupying the kth argument of fk"

22



Using hypothesis (F2), we obtain

l lm ue  ,t = + O,

k I I

a conclusion at variance with (3.30). Thus statement (3.31) Is true.

And Indeed the exact reasoning above proves additionally

(3.32) fI.u.r. = 0(1)
Cruk

as r -- o, the functions evaluated at the point (xCrtCr]. We further

refine this observation by claiming

(3.33)= Ckl U1 + o(1)
utr u~r

k k

as r -4 w. To see this we observe that

(3.34) f k(u) = fk (0) + CklU 1 + O(u 
2

= Cklu1 + O(ul 2 ) (u E .

Now (3.31) yields

Iucr 2 m uCr Cr
I~J 0() 1: (1) k1l1

ucr o Z -- o(I) Cr
k 1=1 uk Uk

as r -- w. Consequently (3.34) implies

(1-(1)) c ucr

ck1 1
Cr ucr
Uk k

as r -. In view of (3.32) then

23



(3.35) 1=001)
Cr

Uk

as r -- ) w. Since

frer C1

Cr Cr
uk Uk

according to hypothesis (F5), claim (3.33) Is proved.

Finally note that (3.35) Implies

(3.45) -c = 0(1)(1,**m

Uk

as r- .

3. Owing to (3.27) and (3.33), Inequality (3.30) yields

*+ d + C V A 0(1) as c --4wt k ''O kl r

at the point Cx lt 0. We now conclude as In the proof of Proposition 3.1(i)

4. Next we verify assertion (i1). We first claim

(3.37) min (v t+ H(Dv ),v S 0 on G0X {0)

In the viscosity sense, which means that If 0 is a smooth test function and

{v -~has a strict local maximum at some point

(x0,O) e G 0 {O}

then either

(3.38) V (x0 9,O) =0

or else

(3.39) ot + HMO) :5 0 at CxO90).
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Now if (3.38) is false, then we repeat the argument from Steps 1-3, above

noting that since

v C(x,0) = 0 for all x near lk

the points Lx Crt,t] lie In R n x (0,.). Consequently the maximua~ principle

arguments employed above lead us to (3.39).

5. Now observe that

v =+ on (R-G~ 0) X{Q},

since v~ = + W on that set. Suppose then that x0 E Go. but

(3.40) v Cx 0O) > 0.

Fix 85 > 0 and write

2

for A = A(.5 to be chosen. Since v Is upper semicontinuous and Is

bounded near l

v 0-0 has a local maximum at a point
(3.41)(x6 

a) e G0 X O W

for each sufficiently small 45 > 0, with

xa45 -x 0  as 8 --+O.

if t .5 > 0, then

0aH(DO ) 0 at Nxot

whence 

8 X
(3.42) A + H : 0,
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a contradiction for A = A(S) large enough. Thus t. = 0.

Now

0 C V (x .0] O (X S ] -0  ;0 1

owing to (3.37) we once again reach the contradiction (3.42). Hence (3.41)

is untenable, so that

v = 0 on Cot

as required. 0

Conclusion of the proof of Theorem 1.

In light of Propositions 3.1 and 3.2 we may invoke the uniqueness

theorems developed in the Appendix, §4, to find

v = v* = I in Rn x (O,w),

where I is the unique viscosity solution of the Hamilton-Jacobi variational

inequality

f min(It+H(DI),I) = 0 in Rn x

(3.43) 1 = 0 on C x {0}

I = + W on (Rn-Go)xO}

Additionally,

(3.44) vk --. I uniformly on compact subsets of R nx(,W), k=l,...,m.

Now according to J5 in [8], we have

(3.45) I = max (J,O),

where J is the unique viscosity solution of the Hamilton-Jacobi equation
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[ Jt + H(DJ) = 0 in Rnx (,o

(3.46) J = 0 on G0X o

J = +~ on (R n~a 0)xf0}

In addition we have the representation formula

(3.47) J(x,t) a Inf { fo L( (s)dsjz(0) e zGt) =X1

the infimum taken over all absolutely continuous functions

z: [ 0, t] n4

Now since (2.5) and (3.44) Imply

C
Vk -I+o(1)

uC= e C= e C kl

we see that

(3.48) uk--- 0 uniformly on compact subsets of 0I>0} Q >01

as c -4.)0, for k=i,...,m.

We must now show

(3.49) lrn inf min u C > 0 uniformly on compact subset of {J<0}.
C-)O iAk~m k

So fix any point NO t ) e 0J<0). Then I = 0 near (xot 0. Define

0, ) 0,0Xo +i-t0

Owing to (3.44) we see that for each k1l,*-,m.

(3.50) v~ - has a maximum at a point (x,.t]

with

(3.51) (x, tc] -- + Nxo,to) as C -4+ 0.
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Applying the maximum principle, we find using (2.6) that

(3.52) o(1) = *t-dkAO + dkIDI12 S - ;
uk

and so

(3.53) fk(u C) S o(1) uk at the point (,xt ,

as c -- ) 0.

Now there exists a constant a > 0 such that

k 2 in
(3.54) f (u) ? cklu I - alul for all u E R

Let us suppose first that

(3.55) uI kt k for each l=l,...,m,lsk.

Then from (3.53) and (3.54) we deduce

o(l)u C 2f (u C) c C k EXIu£ 12

k k cklU +ckkU -

1*k

at (x, tc]; whence (3.55) Implies

(3.56) k x ,t ] a 2k

for c small enough. Should (3.55) fail, then

u t kxCtJ > for some 1 0 k.

But then owing to hypothesis (F2)

f k( .. C tC1•Uk-l0 Uk+l, .. )

at the point ( ,xt C) for some positive constant 1. Thus at ,t] we
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have

fk (u + fk(u C) fk ... .,

m

2 + c u C ( + ucUc
>{+Ckk k - 4() * +~ ~

for some 7 > 0. Consequently (3.53) implies

ru k k k 0 a kL] 2 s + o I)] at]P

and so

C C : > 0uk  kt k

for sufficiently small 8 > 0. But since

we have

xCt] vc 0 tol;

and so

u [xk, tkl < ux0, t0].

Thus

lim inf u. [x0 , t 0J a a > 0. 0

4. Aipendix: Identification of the action function

We outline in this section a proof that the functions v. and v

introduced in f3 agree and equal I, the unique viscosity solution of

min(It +H(DI),I = 0 in Rn x (0,M)

(4.1) 1 = 0 on Go x fo

In 0
I = + =on (R -G,)x{O)
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First we show

(4.2) vo a I in Fn X (0,M).

For this choose any constant p > 0 and any function C e C (Rn) satisfying

{ 0 on GO$ C > 0 on Rn _ GO

0 S .

Consider now the auxiliary problem

Mfn(I t+H(DI ),I ) = 0 in R n X (0,)

(4.3)

I on R n X (OM)

which has a unique, continuous solution according to [6]. Furthermore,

according to assertion (1i) in Proposition 3.1 we have

(4.4) v* 2:I on Rn x {0}.

Finally, v. is lower semicontinuous, and

min(v,t + H(Dv,),v,) ; 0 in Rn x (Oo)

in the viscosity sense. Consequently a comparison argument

following (3] and [6] implies

V* 2I in Rn x (OM).

Letting p tend to infinity we have

I --) I in pn x (0,w);

and so (4.2) follows.

Next we assert that
0

(4.5) v :5I in Rn x (0,.).
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To prove this define for each small 6 > 0 the smooth set

G a Mx 0 G Goldist(x, Rn-GO ) > 8).

Fix 6 > 0 and write

(4.6) A - sup v (x,o) (0 > 0).
x:G6

Since v is upper semicontinuous and

v = 0 on Gx {0}

according to assertion (Hi) of Proposition 3.2, we see that

(4.7) lim A = 0

for each fixed 6 > 0. Choose some small o > 0 and consider the problem

minI' T +H(LIS ' 1 ) . I1'*) 0 in Rn

(4.8) 1., 0. A6  on G x {}

L+ on (R n- 6 )x({0}

In view of Proposition 3.2 we have

v 1a, on n x {}

Since additionally v Is upper semicontinuous and

min(vt + H(Dv ),v ) 5 0 In Rn x (CM)

in the viscosity sense, we have

v IS,' in Rn x (, ).

Let o- -- 0 and recall (4.7) to discover

• 16 Rn
(4.9) V 0 5 on Rnx (0,),

when I is the unique viscosity solution of
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min6 IaH(Ia)1 0In Rn x (0,00)

{ri~t 0 on G. x f0}

+W on (Rn~-G6)X{0}

Now at last send 6 ---* 0: since

1 -4 1 in R nx (,)

we arrive at (4.5).

Combining (4.2) and (4.5) we have

v 51-5V In Fn x(0~).

But since the definitions Imply obviously that

V*: vo in Rn x (,)

we have

v =ve= in R n x (0,w). 13

Mother approach to obtain the above is to modify (in a more or less

straight forward way) the results of M.G. Crandall, P.-L.Lions and P.E.

Souganidis [4] concerning maximal solutions.

32



References

1. G. Barles and B. Perthame, Exit time problems in optimal control and
vanishing viscosity method, to appear.

2. M.G. Crandall, L.C. Evans, and P.L. Lions. Some properties of viscosity
solutions of Hamilton-Jacobi equations, Trans. AMS 282(1984), 487-502.

3. M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi
equations, Trans. AMS 277 (1983), 1-42.

4. M.G. Crandall, P.L. Lions, and P.E. Souganidis. Universal bounds and
maximal solutions for certain evolution equations, to appear in Arch.
Anal. Rat. Mech.

5. L.C. Evans and H. Ishli, A PDE approach to some asymptotic problems
concerning random differential equations with small noise intensities,
Ann.L'Institut H. Poincare 2(1985), 1-20.

6. L.C. Evans and P.E. Souganidis, A PDE approach to geometric optics for
certain semilinear parabolic equations, to appear in Indiana University
Math. J.

7. L.C. Evans and P.E. Souganidis, A PDE approach to certain large deviation
problems for systems of parabolic equations, to appear in Ann.
L'Institute H. Poincare.

8. W.H. Fleming, Logarithmic tranqformations and stochastic control,
Advances In Filtering and Optimal Stochastic Control, ed. by W.H. Fleming
and L.G. Gorostiza, Springer-Verlag.

9. M.I. Freidlin, Functional Integration and Partial Differential Eguations,
Annals of Math. Studies 109, Princeton University Press, Princeton, 1985.

10. M.I. Freidlin, Limit theorems for large deviations and reaction-diffusion
equations, Annals of Prob. 13(1985), 639-675.

11. H. Ishli, A boundary value problem of Dirichlet type for Hamilton-Jacobi
equations.

33


